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The uncertain nature of property-casualty loss reserves

Property Casualty loss reserves are inherently uncertain. There are many potential outcomes of
individual claims. There are claims that have not been reported. The claim handling, inflation, and
judicial environment may all change in unexpected ways, impacting future loss payments.

While the uncertainty of reserves is inescapable, the level of this uncertainty is not fixed, but rather
is a function of the strength of our models and judgment as actuaries. Less effective models of loss
development will generally result in greater differences between predictions of future loss
payments and the actual payments themselves. Superior judgment too, can reduce this predictive
uncertainty. Shifts in the mix of heterogeneous claims within a body of claims data will tend to
increase the uncertainty of the estimate. Greater amounts of information, if properly incorporated
into an analysis will tend to decrease the uncertainty. At some point, however, the cost associated
with obtaining and incorporating additional information is not warranted by the potential reduction
in uncertainty, and a practical minimum of uncertainty is achieved.

In estimating any uncertain quantity two characteristics of the estimate are often discussed by
statisticians, the bias of the estimate, and the variance of the estimate. Generally, it is accepted by
actuaries that loss reserve estimates should be unbiased, (i.e. equal to the statistical expected value
over the range of potential outcomes), although this view is not universally held". Regardless, for a
given level of bias it is desirable to have an estimate that has a low level of variance®.

The effect of multiple estimates on uncertainty

It is common for actuaries to calculate multiple estimates of the same unpaid lost amount. The most
common estimates are those based on multiplicative link ratios and on the Bornhuetter-Ferguson
technique, both of these methods often applied to both paid and case-incurred (reported) losses.
While actuaries may not necessarily speak of it explicitly, when multiple methods are used to arrive
at an estimate of future loss payments, the goal is one of improving predictive accuracy/ reducing
uncertainty. The actuary feels more comfortable with the selected estimate when it is consistent
with multiple estimates. This is an implicit reflection of the reduction in variance that occurs from

! An example of advocating for other than the mean is the paper “Management’s Best Estimate of Loss Reserves”
by Rodney Kreps

? Note: This paper focuses on the variance (uncertainty) of estimates as measured by the difference between the
estimate and the eventual outcome of the body of reserves being analyzed. While there is much discussion in the
literature about variability of central estimates of reserves (i.e. variance of the mean of the distribution), the
concept is not well defined. Each body of reserves is unique, and the distinction between parameter risk, process
risk, and model risk is arbitrary, based on the model of development used. The variance between the estimate and
the ultimate outcome, by contrast is well defined.



the addition of additional information. Selecting an estimate that is between estimates from various
methods is an implicit weighted average of the estimates.

Formalization of the impact of using multiple methods

Formal consideration of weighting individual estimates together to achieve a combined estimate
that minimizes uncertainty is instructive in understanding the process that happens often informally,
and has the potential to bring new insights, and discipline to the process.

Notation and Assumptions:

n=number of estimates

P=the actual total of future payments (fixed, but unknown)

Xi=the estimate of P based on method i

E(X) =P (X; is unbiased)?

X = column vector (Xy,X, ... X,)

cii = Var(Xi)=E((Xi-P)"2)

o;; =Covar(X;,X;) = E[(Xi-P)(X;-P)]

A = covariance matrix with elements a;=g;;

w = column vector of weights (wy, w,,... w,) to be applied to the corresponding estimates to arrive
at combined estimate Y

Y=X'w

e = the column vector of length n containing values of 1 for all elements

Calculation of minimum variance weighting of estimates:
e’w=1 (constraint that the weights sum to 1)
Var(Y)=Var(X'w)=w'Aw

Our objective is to:
Minimize Var(Y) over w, subject to the constraint e’'w=1

This problem can be rewritten using a Lagrange multiplier as:
Minimize £over w and A

where £ =w’Aw + A(1-e’w)

Taking the partial derivatives with respect to each element of w and setting them equal to zero gives
the n equations:
2Aw=)e

® In the case where it is believed that the estimate is biased, the estimate should be excluded entirely from this
process or preferably the estimate should be adjusted to remove the perceived bias.



which can be rewritten:
w=A\A"e/2

Substituting w into e’'w=1:
e’\A'e/2=1
A=2/(e’A'e)

and therefore:
w=A"e/(e’Ae)

Stated in words, the weight to be applied to a given estimate is equal to the sum of the elements in
the corresponding row (or column) of the inverted covariance matrix divided by the sum of all the
elements of the inverted matrix.

The resulting variance can be calculated as well:
Var(X)=(A"e/(e’A"e))’A (Ae/(e’Ae))

= (e’A'AAe)/ (e'A'e)

= (e’A’e)/ (e’A'e)’

=1/ (e'A'e)

Stated in words, the minimum variance is equal to the inverse of the sum of the elements of the
inverted covariance matrix.

As an example, consider two estimates of total future loss payments with standard deviations of
their errors $1 million and $2 million, with no correlation between the errors.

A= 0]
ATl = [(1J .35]
1
12 1=(5)
125

Obviously, considerably more weight is given to the estimate with lower uncertainty. The resulting
standard deviation of the combined estimate is sqrt(1/1.25) = $0.89 million, less than the best
individual estimate, reflecting the benefit of the second method, even though it is inferior to the
first.



Consider the case where the correlation coefficient between the two errors is estimated to be 0.1.
Then:

A= [0?2 042]
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The positive correlation between the errors of the two estimates resulted in more weight being
given to the best individual estimate, since the other estimate provides less independent
information than in the other example. The standard deviation of the combined estimate is now
sqrt(1/1.1616) or $.93 million, a more uncertain result than the case with independent estimates.

Now consider the case where the correlation coefficient is equal to 0.5
1 1
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In this case, all weight is given to the first estimate. The benefit of independent information from

Al =

the second estimate is being exactly offset by the increased covariance with the first estimate. The
standard deviation of the combined estimate in this case is of course $1 million.

An interesting result occurs when we consider the case of a correlation coefficient equal to .75:
1 15
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In this case greater than 100% weight is given to the first estimate and negative weight is given to
the second estimate. In other words the combined estimate is outside the individual estimates. The
standard deviation of the combined estimate is sqrt(1/1.1429) = $.94 million, an improvement over



using the first estimate alone. While this result is somewhat counterintuitive at first glance, this can
be explained by thinking about the second estimate as indicating the errors of the first estimate in
advance. When the first estimate is too low, the second estimate will generally be too low by an
even larger amount. When the first estimate is too high, the second estimate will generally be too
high by an even large amount. So if the second estimate is less than the first estimate, this is seen as
an indication that both estimates are probably too low. If the second estimate is greater than the
first estimate, it is an indication that both estimates are probably too high. The greater the strength
of this correlation, and the greater the difference between the uncertainty of the estimates, the
greater this signaling effect will be. In fact, if the estimates are fully correlated, any difference in the
uncertainty of the two estimates will imply an exact (i.e. certain) estimate®. In practical reality
actuaries are hesitant to select an estimate that is outside of the range of their indications from
individual methods. This would require putting a great deal of faith in the estimated correlation
between methods. Cases where such an indication of negative weighting occurs can be useful
information, however, potentially leading the actuary to looking for a common source between the
methods for their errors, with the hope of explicitly adjusting methods to remove the error, or to
consider with greater intensity situations where the estimates are very different from each other as
to whether such signaling may be occurring.

If it is decided that negative weights are not allowed, the solution to the variance minimization
problem may lie on one of the boundaries (i.e. where one or more of the weights equals zero). With
the weight for a particular estimate equal to zero, the problem can be thought of as simply ignoring
that estimate entirely (eliminating its corresponding row and column from the covariance matrix).
By systematically removing estimates from the problem, and optimizing, all the potential solutions
can be found, and the global minimum determined.

For the case of the two estimate example shown above, the non-negative solution is trivial (100%
weight to the first estimate). An example of the technique will be revisited later in this paper with a
four estimate example.

* The combined estimate in this case is equal to (0X1-X,)/(a-1) where a = sqrt(c22/c11). This can not be calculated
directly using the minimized solution formulas in this paper, but can be proven by taking the limit as the
correlation coefficient approaches 1.



Estimating the uncertainty an individual reserve estimate

Until this point we have taken the covariance matrix of reserve estimates as a given. Estimating the
uncertainty of such an estimate is not a trivial exercise. We could simply observe the errors of
methods as of a particular point of loss development, compared to what eventually emerged when
the body of claims is more or less fully developed. However, as with the general problem of
developing the estimate itself, the complicating factor is that by the time a cohort of claims is
considered fully developed, it can be quite old, with the potential for significant changes in the
underlying environment and exposure since the time the claims were incurred or reported. For this
reason, as well as for the reason of not wanting to exclude any meaningful data, immature data is
typically used to assist in the estimation of the parameters of loss development (e.g. age-to-age
factors combined together to create age-to-ultimate factors). Similarly, in order to fully use the
immature data for the purposes of measuring the potential uncertainty around an estimate, the
piecewise emergence of this uncertainty over time can be considered, and combined together to a
single measure of uncertainty.

Measurement of such uncertainty has been discussed by a number of authors®. One complicating
factor often left unaddressed is the potential for correlation between development periods. Using
an example of loss development factor approaches, an example of negative correlation would be
when an individual large claim emerges as an isolated incident. The observed development in the
period where the claim emerges, relative to the previous period is larger than typical for that
development period. Subsequent development, relative to losses at the previous period, is lower
than typical. An example of positive correlation between development periods is where two groups
of claims, one that develops more rapidly than another are combined together into a single triangle,
where the mix between the two changes over time. The accident periods which contain more slow-
developing losses will have relative development that is consistently greater for multiple
development periods than those which have more rapidly developing losses.

> A few of the papers on this topic include: Thomas Mack, “The Standard Error Of Chain Ladder Reserve Estimates:
Recursive Calculation and Inclusion of a Tail Factor”, ASTIN Bulletin Vol. 29. No. 2, 1999, pp 361-366; Daniel M.
Murphy, “Chain Ladder Reserve Risk Estimators”, CAS E-Forum Summer 2007; Pinheiro, Andrade e Silva, &
Centeno, “Bootstrap Methodology in Claim Reserving”.



Consider the following triangle of cumulative paid loss development:

AccYrl
AccYr2
AccYr3
AccYr4
AccYr5
Acc Yr6
AccYr7
AccYr8
AccYr9
AccYr 10

Selected Age-Age Factors:
Age-Ultimate Factors

“Selected” age to age factors have been included to illustrate that estimated future development is

Agel Age 2
67,280 176,011
46,242 175,038
36,758 182,030
76,464 302,499
85,376 319,303
64,905 387,337
47,353 229,982
38,509 220,996
41,188 217,770
52,371

1-2 2-3

4.967 1.914

24.685 4.970

Age 3
297,430
300,846
372,771
578,500
563,223
781,353
466,113
404,076

3-4
1.49
2597

Age 4
370,321
433,181
547,660
796,966
835,815

1,131,217
741,354

45
1.229
1.736

Age 5
460,803
577,144
651,400
888,212

1,125,921
1,352,403

5-6
1.113
1.412

Age 6
492,379
663,648
714,248

1,088,212
1,237,492

6-7
1.106
1.269

Age7
525,096
704,047
784,677

1,209,348

7-8
1.050
1.147

Age 8
547,416
719,313
842,825

89
1.030
1.093

Age9
551,408
782,765

9-10
1.020
1.061

not necessarily a specific simple or weighted average of observed development, but often reflect

significant professional judgment on the part of the actuary.

The indicated ultimate loss for Accident Year 10 is 32,371 * 24.685 = 1,292,769. What is the
uncertainty surrounding this estimate as of Age 1? We cannot directly observe this uncertainty. We

have ten observed Accident Years as of Age 1, but we do not have any “observations” of the

ultimate loss for these same accident years. The closest we have is an observation at Age 10

Age 10
554,232

10-ult
1.040
1.040

(Accident Year 1). However, similar to the link ratio development method itself, we can observe the

behavior of our errors piece-wise over time.

Starting with the loss at Age 1 for each Accident Year, predictions of cumulative paid loss at each age

of development can be made by chaining through the appropriate selected age-to-age factors.

AccYrl
Acc Yr2
AccYr3
AccYr4
AccYr5
AccYr6
AccYr7
AccYr8
AccYr9
Acc Yr 10

Errors:

AccYrl
Acc Yr2
AccYr3
AccYr4
AccYr5
AccYr6
AccYr7
AccYr8

Predictor Predictions
Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10 Ultimate
67,280 334,180 639,620 956,872 1,175,995 1,308,883 1,447,624 1,520,005 1,565,606 1,596,918 1,660,794
46,242 229,684 439,615 657,664 808,269 899,604 994,962 1,044,710 1,076,051 1,097,572 1,141,475
36,758 182,577 349,452 522,781 642,498 715,100 790,900 830,445 855,359 872,466 907,364
76,464 379,797 726,931 1,087,489 1,336,523 1,487,551 1,645,231 1,727,493 1,779,317 1,814,904 1,887,500
85,376 424,063 811,656 1,214,237 1,492,297 1,660,927 1,836,985 1,928,834 1,986,700 2,026,434 2,107,491
64,905 322,383 617,041 923,094 1,134,482 1,262,679 1,396,523 1,466,349 1,510,339 1,540,546 1,602,168
47,353 235,202 450,177 673,465 827,689 921,218 1,018,867 1,069,810 1,101,904 1,123,942 1,168,900
38,509 191,274 366,099 547,684 673,103 749,164 828,576 870,004 896,104 914,027 950,588
41,188 204,581 391,568 585,785 719,930 801,282 886,218 930,529 958,445 977,614 1,016,718
52,371 260,127 497,883 744,832 915,399 1,018,839 1,126,836 1,183,178 1,218,673 1,243,047 1,292,769
The cumulative error terms can be now be observed by subtracting the corresponding observation
of actual cumulative paid loss, where it is known.
Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10
158,169 342,190 586,551 715,192 816,504 922,528 972,589 1,014,198 1,042,686
54,646 138,769 224,483 231,125 235,956 290,915 325,397 293,286
547 (23,319) (24,879) (8,902) 852 6,223 (12,380)
77,298 148,431 290,523 448,311 399,339 435,883
104,760 248,433 378,422 366,376 423,435
(64,954) (164,312) (208,123) (217,921)
5,220 (15,936) (67,889)
(29,722) (37,977)

AccYr9

(13,189)




The loss that would have been predicted for Accident Year 1 at Age 2 using the loss amount at Age
1, and the selected development factor from Age 1 to Age 2 is larger than the actual observed loss
at Age 2 by 158,169. By Age 10, the error (based on the prediction at Age 1) has grown to 1,042,686.

It is useful to view these error terms relative to a base amount to reflect changes in volume. A
natural choice is the value of the predictor variable, in this case the loss at Age 1.

Relative Errors: Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10
AccYrl 2.35 5.09 8.72 10.63 12.14 13.71 14.46 15.07 15.50
Acc Yr2 1.18 3.00 4.85 5.00 5.10 6.29 7.04 6.34

AccYr3 0.01 (0.63) (0.68) (0.24) 0.02 0.17 (0.34)

AccYr 4 1.01 1.94 3.80 5.86 5.22 5.70

AccYr5 1.23 291 4.43 4.29 4.96

Acc Yr 6 (1.00) (2.53) (3.21) (3.36)

AccYr7 0.11 (0.34) (1.43)

AccYr8 (0.77) (0.99)

AccYr9 (0.32)

RMSE (-1) | 1.176 2.778 4.906 6.178 7.082 8.711 11.369 15.074

RMSE (all) 1.114 2.622 4574 5.804 6.711 8.064 9.284 11.564 15.498
RMSE Growth 2.230 1.646 1.183 1.086 1.139 1.066 1.017 1.028

Three summarizing rows have been added to the bottom of this table. The first shows the root mean
squared error (RMSE) across all accident years with the exception of the most recent year. The
second row shows the RMSE for all years. Organizing the data in this way allows us to calculate a
RMSE growth factor from age to age (row three). For example, the RMSE at Age 2 for Accident Years
1 through 8 was 1.176. The RMSE at Age 3 for the same group of accident years grew to 2.622,
implying a growth factor of 2.622/1.176 = 2.230. By using these growth factors we can take
advantage of all the information in the triangle (including immature accident periods), and also

reflect correlation across development periods.

The factor to apply to the loss at Age 1 in order to arrive at the estimated RMSE of the Ultimate loss

is calculated as:
1.114*2.230*1.646 * ... * 1.028 * 1.046 = 6.976

This was arrived at by multiplying the Age 2 RMSE factor for all years (1.114) by the growth factors,
including a growth factor to take us from Age 10 to ultimate (1.046). This final factor was selected
based on the size of the selected tail factor of 1.04. Since this tail factor is greater than the size of
the 9-10 factor, but less than the size of the 8-9 factor times the 9-10 factor, we multiplied the RMSE
growth factors for ages 8-9 and ages 9-10 to arrive at this factor.

This same procedure can be applied for each of the points of development:
e Project all future loss amounts based on a common point of development.
e Subtract observed amounts from the predicted amounts.
e Relate the error terms back to the predictor variable.



e Calculate the RMSE and growth in RMSE from age to age.
e Combine RMSE and RMSE growth factors to arrive at a factor to the predictor variable.

Summarizing the results for predicting at Age 2:

Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10 Ultimate
AccYrl 0.224 0.759 0.901 1.119 1.349 1.438 1.552 1.630
Acc Yr 2 0.195 0.389 0.222 0.125 0.310 0.439 0.213
AccYr3 (0.134) (0.145) (0.059) (0.007) 0.021 (0.082)
AccYr4 0.002 0.229 0.583 0.319 0.334
Acc Yr5 0.150 0.246 (0.007) 0.041
AccYr6 (0.103) (0.057) 0.028
AccYr7 (0.113) (0.360)
AccYr8 0.086
RMSE (-1) 0.147 0.380 0.491 0.585 0.799 1.063 1.552
RMSE (All) 0.141 0.377 0.448 0.524 0.712 0.870 1.108 1.630
RMSE (Growth) 2.556 1.180 1.067 1.216 1.088 1.042 1.050 1.094
Factor to Predictor 0.141 0.361 0.426 0.455 0.553 0.602 0.627 0.658 0.720

Note that the RMSE growth factors are not the same as the growth factors when looking at predictions
from Age 1, even for the same points of development.

Continuing this method for each of the development ages gives:

Age-Ult Loss

Cumulative Development Indicated Indicated Selected Estimated CV of CV of

Paid Loss Factor Ultimate Loss RMSE Factor RMSE Factor RMSE Reserve Reserve Ultimate
AccYrl 554,232 1.040 576,401 0.100 55,423 22,169 2.50 0.10
Acc Yr2 782,765 1.061 830,357 0.120 93,932 47,592 1.97 0.11
Acc Yr3 842,825 1.093 920,891 0.210 0.150 126,424 78,066 1.62 0.14
AccYr4 1,209,348 1.147 1,387,431 0.112 0.170 205,589 178,083 1.15 0.15
Acc Yr 5 1,237,492 1.269 1,570,209 0.052 0.200 247,498 332,717 0.74 0.16
Acc Yr 6 1,352,403 1.412 1,909,926 0.166 0.250 338,101 557,523 0.61 0.18
AccYr7 741,354 1.736 1,286,731 0.404 0.300 222,406 545,377 0.41 0.17
AccYr8 404,076 2.597 1,049,197 0.368 0.500 202,038 645,121 0.31 0.19
AccYr9 217,770 4.970 1,082,265 0.720 1.000 217,770 864,495 0.25 0.20
Acc Yr 10 52,371 24.685 1,292,769 6.976 6.000 314,226 1,240,398 0.25 0.24

The actual RMSE factors to be applied to the cumulative paid loss amounts were selected based on the
indicated RMSE factors. Just as in estimating the mean, judgment can play an important role. It is
intuitive that the RMSE factor should decrease with the age of the accident period. It is also intuitive
that the coefficient of variation (CV) of reserves should increase as the age of the accident period
increases and that the CV of ultimate losses should decrease.

Combining accident year estimates of uncertainty, including correlation effects

In addition to correlation between development periods within an accident period, correlation can exist
regarding future loss payments between accident periods. Note that we are not talking about
correlation between losses that have already occurred, but only the estimates of the amounts yet to be
paid. These correlations can be brought about by changes in claim handling or other environmental
impacts (judicial environment, inflation, etc.).



One way to estimate such correlations is by observing the errors in incremental amounts across the

triangle:

Prediction as of the prior period

AccYrl
Acc Yr 2
AccYr3
AccYr4
AccYr5
Acc Yr 6
AccYr7
Acc Yr 8
AccYr9

Predictive Error

AccYrl
Acc Yr 2
AccYr3
AccYr4
AccYr5
AccYr6
AccYr7
AccYr 8
AccYr9

Age 2
334,180
229,684
182,577
379,797
424,063
322,383
235,202
191,274
204,581

Age 2
158,169
54,646
547
77,298
104,760
(64,954)
5,220
(29,722)
(13,189)

Age3
336,885
335,023
348,405
578,983
611,146
741,363
440,186
422,986

Age 3
39,455
34,177

(24,366)
483
47,923
(39,990)
(25,927)
18,910

Age 4
444,955
450,066
557,665
865,436
842,582

1,168,904
697,305

Age 4
74,634
16,885
10,005
68,470

6,767
37,687
(44,049)

Age 5
455,125
532,379
673,074
979,471

1,027,217
1,390,266

Age 5
(5,678)
(44,765)
21,674
91,259
(98,704)
37,863

Age 6
512,874
642,361
725,008
988,580

1,253,150

Age 6
20,495
(21,287)
10,760
(99,632)
15,658

Age 7
544,571
733,995
789,958

1,203,562

Age 7
19,475
29,948

5,281
(5,786)

Age 8
551,351
739,249
823,911

Age 8
3,935
19,936
(18,914)

Age 9
563,838
740,892

Age 9
12,430
(41,873)

Age 10
562,436

Age 10
8,204

The error terms here are calculated using the prior period’s loss amount as the predictive variable. We

can now compare correlation of neighboring accident years at the same point in time. For example we

can pair the error from Acc Yr 2 in Age 2 with the error from Acc Yr 3 in Age 3 since they are subject to

common development environments (i.e. same calendar period). In this way we can look at many pairs:

54,646
547
77,298
104,760
(64,954
5,220
(29,722
(13,189
34,177
(24,366
483
47,923
(39,990

Etc.

)

)
)

)

)

39,455
34,177
(24,366)

483
47,923
(39,990)
(25,927)
18,910
74,634
16,885
10,005
68,470

6,767

We can then calculate a correlation coefficient. In this case, comparing adjacent accident periods only,

we arrive at a correlation coefficient of 0.100. With only 36 pairs of observations, this result is not



statistically significantly different from zero®. We can similarly compare accident periods with those two
periods away, three periods away, etc.

Acc Period Measured Number of Significance Selected
Difference  Correlation Pairs Level Correlation
1 0.1001 36 0.5497 0
2 -0.1296 28 0.4947 0
3 -0.0876 21 0.6911 0
4 0.1991 15 0.4435 0
5 0.1174 10 0.7164 0
6 -0.7491 6 0.0324 0
7 0.1125 3 0.8571 0

The only correlation that was measured as statistically significant from zero was the correlation between
accident periods 6 away from each other. Intuitively, there is little justification for this correlation given
that the nearer period comparisons show no correlation.

We subjectively determined, for this data, that the correlations should

e Not be negative
o Not be larger than a correlation for a nearer accident period
e Only be used if statistically significant (otherwise set to zero)

The RMSE of our estimated ultimate loss, in total, can now be estimated by using the correlation matrix
and accident year specific RMSE estimates:

o = sqrt(x'Cx)

In this case the correlation matrix is simply the identity matrix

(1 0 0 0 0 0 0 0 0 O
0100 0 0 OOTUOPW
0 01 0 0 O0O0OO0OO0TUO
0 001 0 0 0O0O0OTPO
0 000O1T 0 O0OO0TO0TDO
0 0000O1TO0O0TO0TPO
0 000 0010 00O
0 0 00OO O O0OT1TO0TO
0 0000 O0OO0OO0OT1TTPO

0 0 0 0 000 0 0 1-

And the total RMSE is therefore $694,376 which is simply the square root of the sum of the squared
values for each accident period for this specific case.

® Using a t-test where t = p*sqrt(n)/sqrt(l-pz) with n degrees of freedom.



Generalization of this Technigue

This technique can be generalized to be used with other loss development methods. The generalization
to using case-incurred data instead of paid data is trivial. The potential for case savings does not pose
problems, since no distributional form is assumed. The generalization for the Bornhuetter-Ferguson
method is relatively straightforward. The loss development from a particular point to a particular point
is simply a factor to earned premium that is a function of the seed loss ratio and the portion of the
overall development expected to occur over that time period. The logical base for the RMSE factor is the
premium for the year times the seed loss ratio for the year.

For this example, we have calculated the following estimates of reserve standard deviation under each
of the four common methods of loss development:

Paid LDF 694,376
Inc LDF 1,280,230
Paid B-F 1,273,936
Inc B-F 707,665

Correlation between the Methods

Similar to the method for looking at accident year correlation, we can estimate the correlation between
the various reserve estimates by looking at corresponding pairs of errors, in this case matching up by
accident and development period for two methods to be compared.

Predictive Error - Paid LDF

Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10
AccYr1l 158,169 39,455 74,634 (5,678) 20,495 19,475 3,935 12,430 8,204
Acc Yr 2 54,646 34,177 16,885 (44,765) (21,287) 29,948 19,936 (41,873)
AccYr3 547 (24,366) 10,005 21,674 10,760 5,281 (18,914)
AccYr 4 77,298 483 68,470 91,259 (99,632) (5,786)
AccYr5 104,760 47,923 6,767 (98,704) 15,658
Acc Yr 6 (64,954) (39,990) 37,687 37,863
AccYr7 5,220 (25,927) (44,049)
Acc Yr 8 (29,722) 18,910
AccYr9 (13,189)

Predictive Error - Incurred LDF

Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10
AccYr1l 63,856 64,318 51,033 4,630 10,993 23,402 (10,667) 3,778 75
Acc Yr 2 65,030 122,853 441 (50,411) 22,416 10,133 (18,730) (3,184)
AccYr3 (76,509) 46,664 (28,013) 25,992 29,096 (44,162) 30,221
AccYr4 3,836 33,019 18,569 23,737 (50,475) 10,238
AccYr5 (64,145) (50,898) (47,898) (6,952) (11,110)
Acc Yr 6 (116) (39,177) 82,700 2,547
AccYr7 70,916 5,857 (77,161)
Acc Yr 8 1,150 3,682
AccYr9 (63,861)

Each of the tables above is based on predictions based on loss as of the prior period. Matching up pairs
of corresponding values (ex. Paid Error for AY 1, Age 2 with Incurred Error for AY 1, Age 2) we measure a
correlation coefficient of 0.345.

We calculate the full correlation matrix using the standard four methods as:



Paid LDF Inc LDF Paid BF Inc BF
Paid LDF 1.000 0.345 0.604 0.388
Inc LDF 0.345 1.000 0.145 0.669
Paid BF 0.604 0.145 1.000 0.581
Inc BF 0.388 0.669 0.581 1.000

The result is fairly intuitive. Paid LDF and Paid BF methods are highly correlated because they both rely
on paid development factors. Incurred LDF and Incurred BF methods are similarly correlated. The two
Bornhuetter-Ferguson methods are correlated with each other because they rely on the same seed loss
ratio parameters. Already you can quickly see that it is somewhat false comfort if all of your indications
are aligned. If they are highly correlated, you are simply seeing slightly different variations on the same
theme.

Optimized Weights

The covariance matrix between the four methods is:

Paid LDF Inc LDF Paid BF Inc BF
Paid LDF 4.82E+11 3.06E+11 5.34E+11 1.91E+11
Inc LDF 3.06E+11 1.64E+12 2.37E+11 6.06E+11
Paid BF 5.34E+11 2.37E+11 1.62E+12 5.24E+11
Inc BF 1.91E+11 6.06E+11 5.24E+11 5.01E+11
The inverted matrix is:
3.949E-12 -1.036E-12 -1.611E-12 1.433E-12
-1.036E-12 1.591E-12 9.097E-13 -2.483E-12
-1.611E-12 9.097E-13 1.767E-12 -2.335E-12
1.433E-12 -2.483E-12 -2.335E-12 6.900E-12

Which suggests the following optimal weights:

Paid LDF 69%
Inc LDF -26%
Paid BF -32%
Inc BF 89%

This weighting gives more than 100% weight to a combination of Paid LDF and Inc BF estimates, with
negative weights to the other two methods. This is due to the lower estimated variability of the Paid LDF
and Inc BF methods and the fact that the estimates with higher variability are highly correlated with the
other estimates. The resulting estimated standard deviation is $502,340, which is lower than for the
best single-method estimate.



The optimal non-negative weighting is given by:

Paid LDF 52%
Inc LDF 0%
Paid BF 0%
Inc BF 48%

About equal weight is given to the Paid LDF and Incurred BF estimates with this weighting, with no
weight given to the other two methods. The interpretation is that giving any weight to the other two
methods would decrease the predictive accuracy because of their added volatility.

This is the result for a specific example. Other data would result in different weights. Different factor or
seed loss ratio selection would result in different weights as well.

Summary

When considering the weight to be given to different indications of property casualty loss reserve
estimates, one should consider reducing uncertainty to be an important goal. Estimating this uncertainty
for each method, as well as correlations between methods provides the opportunity to calculate
weights that result in a combined estimate with a minimized variance. Understanding why such
optimized weights are indicated is of value for understanding the ramifications of choosing between
various methods, even if such weights are not actually relied upon.





